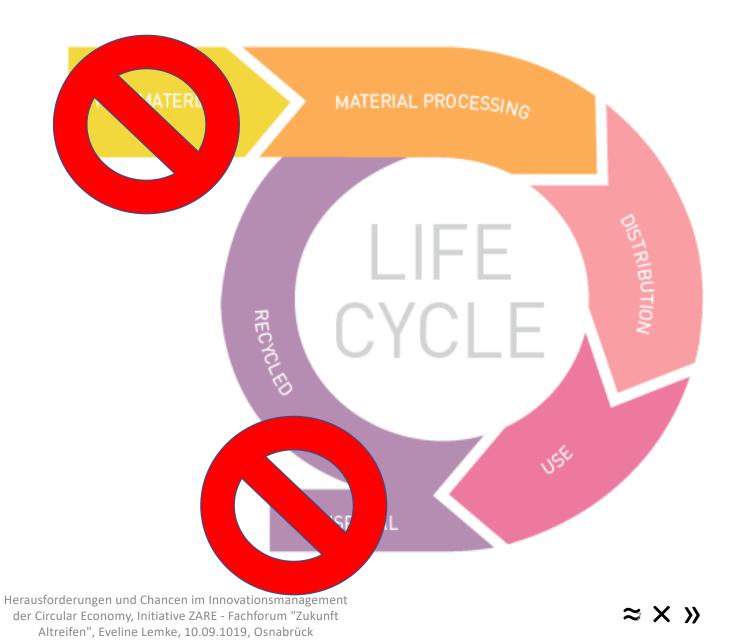

Thinking Circular

"Herausforderungen und Chancen im Innovationsmanagement der Circular Economy"

- 1. Circular Economy Definition, Treiber, Grenzen, Herausforderungen
- 2. Stoffstrom Altreifen Herausforderungen
- 3. Innovationsmanagement innerhalb der Circular Economy

1.	Circular Econo	mv – Definition.	Treiber, Grenzen.	Herausforderunge	en
•••					



Definition Circular Economy

Quelle	Definition
UNEP, 2006	A Circular Economy is an economy which balances economic development with environmental and resources protection
European Commission, 2015	"In a circular economy the value of products an materials is maintained for as long as possible, waste and resources use are minimised and resources are kept within the economy when a product has reached the end of ist life, to be used again and agian to create future value."
EMF, 2016	"A circular economy is one that is restorative and regenerative by design"
§ 3 (19) KrWG	Kreislaufwirtschaft ist die Vermeidung und Verwertung von Abfällen
Baulexikon, 2016	"Rohstoffe sollen über den Lebenszyklus einer Ware hinaus wieder vollständig in den Produktionsprozess zurückgelangen.
EPEA, 2019	"Cradle-to-Cradle", Trennung von biologischem und technologischem Kreislauf

LCA:
Do good!
Do better!
Do no harm!

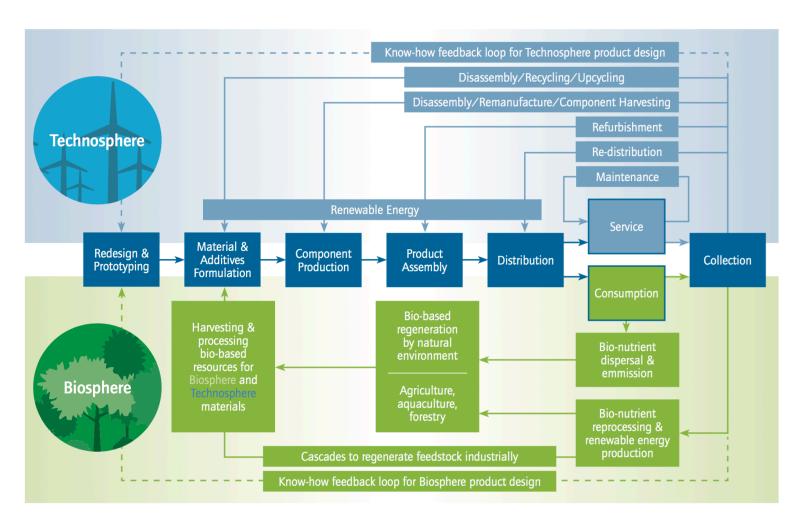
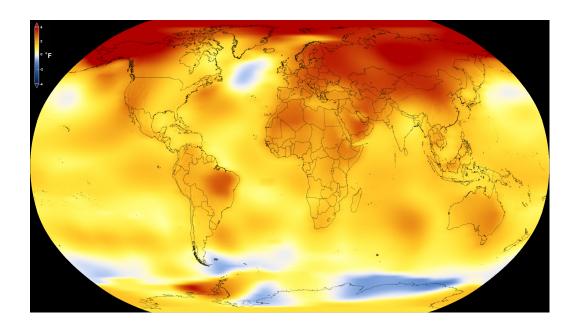


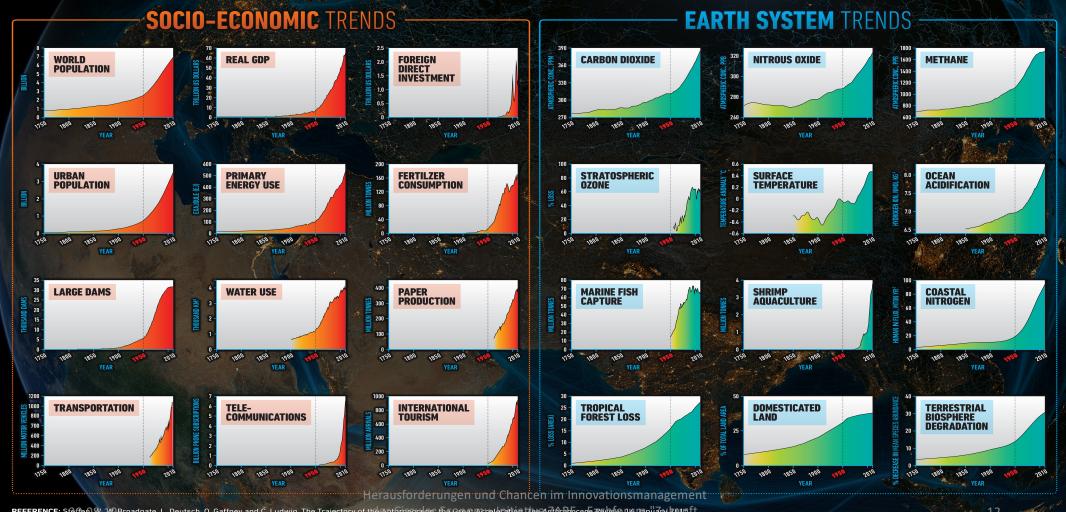
Abbildung 3: Illustration der Materialflüsse in der Circular Economy powered by Cradle to Cradle® (Quelle: EPEA & Returnity Partners)

1. Circular Economy – Definition – Der essbare Reifen?


1. Circular Economy - Treiber, Grenzen, Herausforderungen

Rohstoffwende

0:31 / 3:10 🚍 🦑 🖂 🚼


Klimawandel

Source: National Geographic on marine littering:

Temperaturmittel von 2013 - 2017 im Vergleich zum https://www.youtube.com/watch?v=HQTUWK7CM_Y enungen und Chancen im emperaturmittel.von 1951 - 1980. (Bild: Scientific)

THE GREAT ACCELERATION

REFERENCE: S(@ffen) W., W) Broadgate, L. Deutsch, O. Gaffney and C. Ludwig, The Trajectory of the Anthropocene: the Great Acceleration the Anthropocene acceleration the Anthropocene acceleration to MAP & DESIGN: Félix Pharand-Deschênes / Globaïa Altreifen", Eveline Lemke, 10.09.1019, Osnabrück

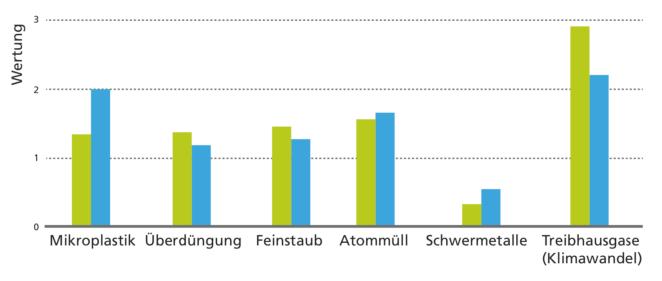

Wie würden Sie auf lange Sicht Mikroplastik im Vergleich zu anderen Großproblemen einschätzen?

Bild 7-1:

Umfrageergebnisse (nExpert=73, nLaie=69) zur Einschätzung der Gesundheitsgefährdung und Relevanz von Mikroplastik auf lange Sicht [Eigene Darstellung].

Mikroplastik, Typ B, Reifenabrieb

	Quelle	Emissionen [g/(cap a)]		
Nr.		UMSICHT	Werte anderer Autoren	
			Min.	Max.
1	Abrieb Reifen	1 228,5	49,6	1 357,0
1.1	Pkw	998,0	-	-
1.2	Lkw	89,0	-	-
1.3	Skateboards, usw.	17,9	-	-
1.4	Fahrräder	15,6	-	-
1.5	Motorräder	8,0	-	-

Fazit 7: Kunststoffemissionen bestehen in Deutschland zu 26 % aus Makroplastik und zu 74 % aus Mikroplastik, sie betragen ca. 3,1 % des Kunststoffverbrauchs, damit sind sie eine relevantes Hindernis bei dem Ziel, eine Circular Economy zu erreichen.

In Deutschland werden ca. 14,5 Mio. Tonnen Kunststoffe²⁶ pro Jahr verwendet, entsprechend einem jährlichen pro Kopfverbrauch von 176 kg. Die mit diesem Einsatz von Kunststoffen verbundenen Emissionen²⁷ belaufen sich auf ca. 446 000 Tonnen pro Jahr. Dies entspricht ca. 3,1 % des in Deutschland insgesamt verbrauchten Kunststoffs. Jeder Bürger verantwortet Emissionen von ca. 5,4 kg pro Kopf und Jahr.

Diese Kunststoffemissionen bestehen zu 26 % aus Makroplastik und zu 74 % aus Mikroplastik (Bild 3-4). Dem, was für jeden offensichtlich ist, steht also eine etwa dreifach größere Mengen gegenüber, die zum Teil nur unter dem Mikroskop sichtbar wird.

Zukunft der Abfallverbrennung? Zukunft der Chemieindustrie? Was macht Innovationen aus?

Globalisierung verändert das Weltsystem

- •Intensivierung Naturnutzung, Ressourcenverbrauch steigt
- •exponentielles Wachstum industrieller Stoffströme
- •Wachstum von Abfall, inkl. Co2 in der Atmosphäre und Plastik in den Meeren
- •Komplexitätssteigerung funktionaler Differenzen

Globalisierte, heterogene, ungleichzeitig Moderne mit periodischen Restrukturierungen

Kondratieffs lange Wellen der Modernisierung

1890er

1840er

Trends:

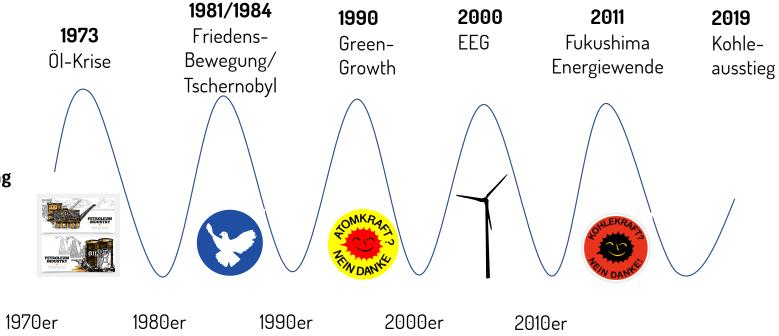
Biotechnologie Gesundheittechnologie Nanotechnologie Digitalisierung

Chance zur Lösung der Klimaprobleme?

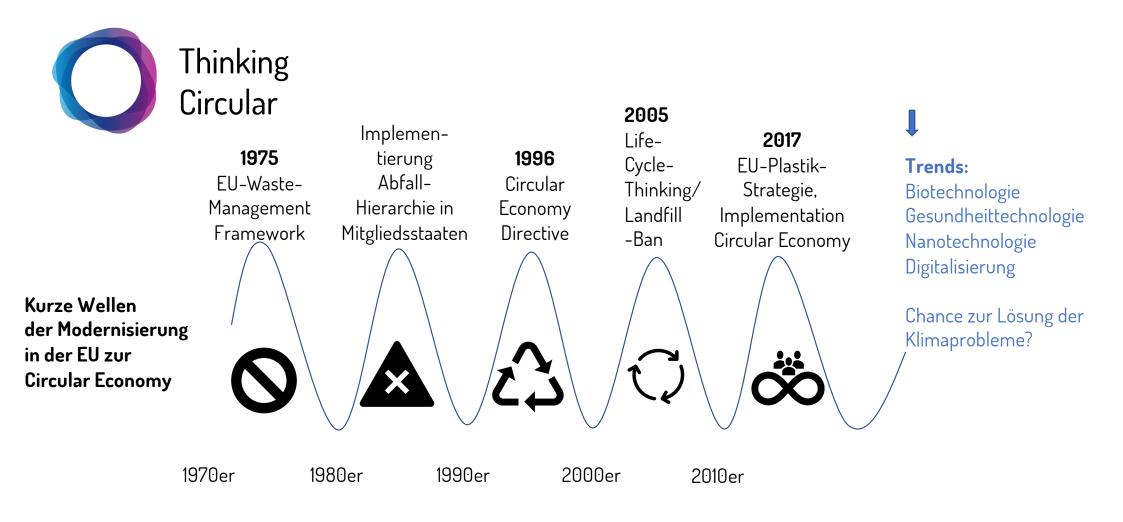
1940er

1980er

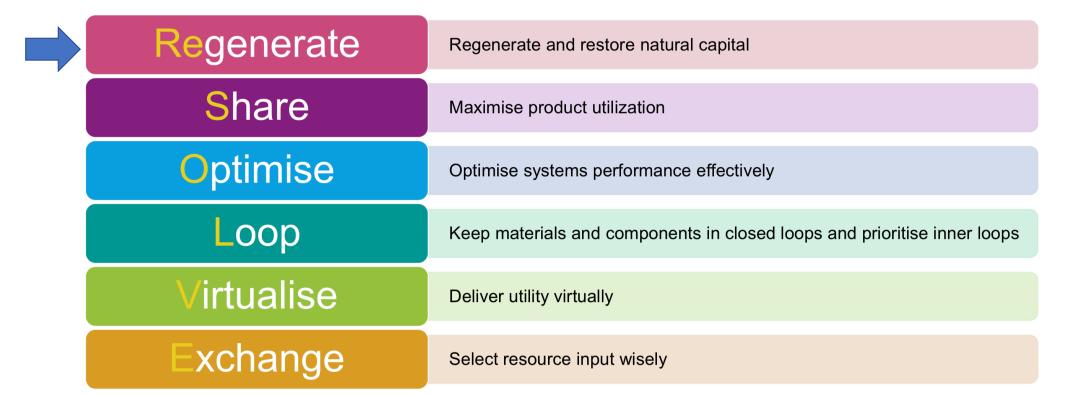
1780er


2050

TAB?


Ausstieg

Bildquelle: "https://de.freepik.com/foto s-vektoren-kostenlos/banner">Banner Vektor erstellt von macrovector de.freepik.com



Herausforderungen und Chancen im Innovationsmanagement der Circular Economy, Initiative ZARE - Fachforum "Zukunft Altreifen", Eveline Lemke, 10.09.1019, Osnabrück

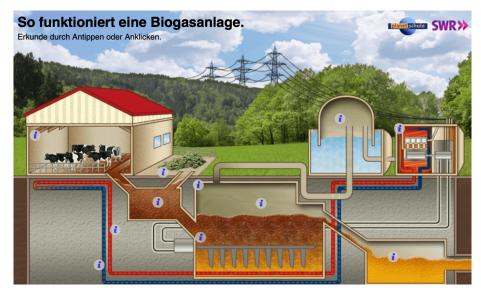
Innovation als Treiber – Prinzipien der Innovation in der Circular Economy

Recycle

Renewable Energy

Elektro- und Elektronikgeräte und Bauteile

Photovoltaik



Repair / Reuse

Repair Café Wegwerfen? Denkste!

Bild: Repaircafe Schweinfurt Stiftung anstiftung

Regenerate

https://www.planet-schule.de/sf/multimedia-interaktive-animationen-detail.php?projekt=biogasanlage

Regenerate and restore natural capital

Share

Maximise product utilization

Optimise

Optimise systems performance effectively

Loop

Keep materials and components in closed loops and prioritise inner loops

'irtualise

Deliver utility virtually

xchange

Select resource input wisely

Sharing

Free-floating within an operational area (e.g. Car2Go)
Free-floating with pool stations (e.g. Autolib)
Round trip, home zone based (e.g. Partago)
Round trip, pool station based (e.g. Greenwheels)
Peer-to-peer and community schemes (e.g. Drivy)

Energy as a Service - EAAS

http://engieenergyrevolution. com/wpcontent/uploads/2017/10/En ergy-As-A-Service-Whitepaper.pdf

Regenerate and restore natural capital

Share

Maximise product utilization

Optimise systems performance effectively

Loop

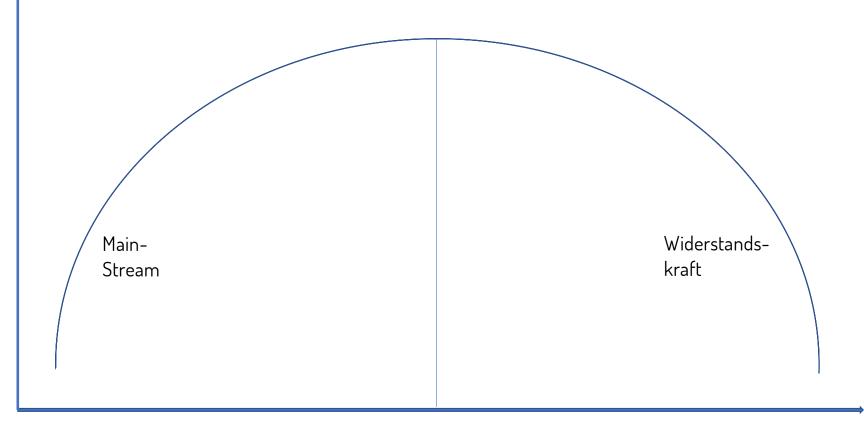
Keep materials and components in closed loops and prioritise inner loops

Virtualise

Deliver utility virtually

Exchange

Select resource input wisely



Effektivität sichert ökonomische Lebendigkeit

Source: Webster, Ken; J. Bleriot, C. Johnson, Eds

Effizienz

Vielfalt, Netzwerk

Zwei Ziele der EU-Wirtschaft

Verbesserung der Nutzung von Ressourcen, Effizienz

Circular Economy

http://ec.europa.eu/smartregulation/roadmaps/docs/plan_2016_116_cpw_ en.pdf

- Quote: 85 % stoffliche
- Verwertung
- Tyre-to-Tyre-V0
- PAK-Gehalt max 10 mg/kg

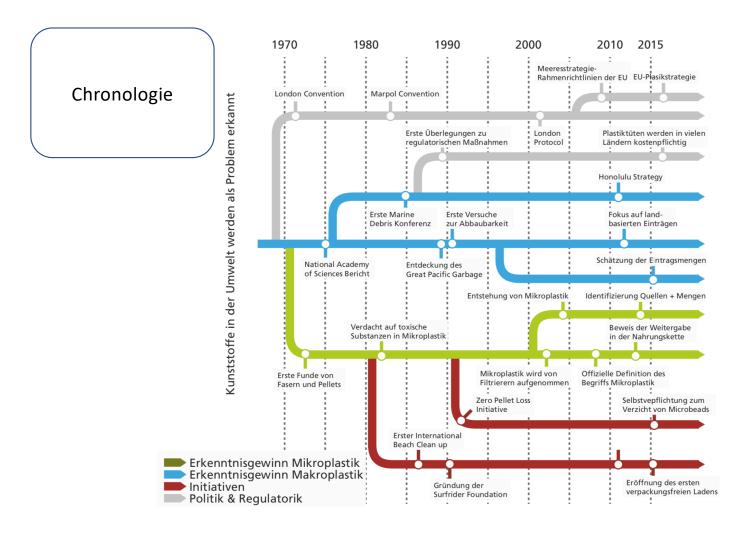
REACH

Frei von Giften

http://ec.europa.eu/environment/circular -economy/index_en.htm

Industrial Solution Steering Tools

Legal digital material banks



Abfall = illegale Substanzen

Definition von "Recycling"

Legislativrahmen Mikroplastik im Visir

Quelle: Fraunhofer Umsicht 2019

Regenerate

Regenerate and restore natural capital

Share

Maximise product utilization

Optimise

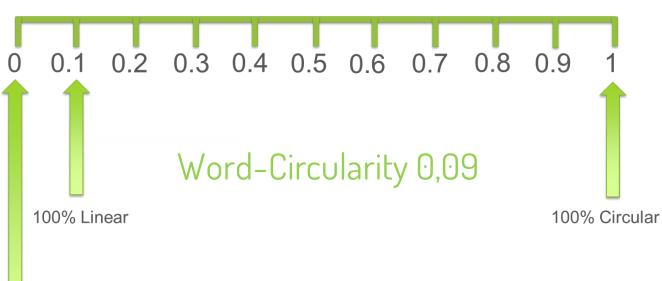
Optimise systems performance effectively

Loop

Keep materials and components in closed loops and prioritise inner loops

Virtualise

Deliver utility virtually

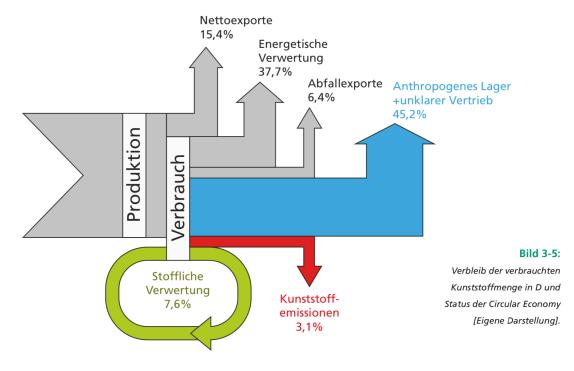

Exchange

Select resource input wisely

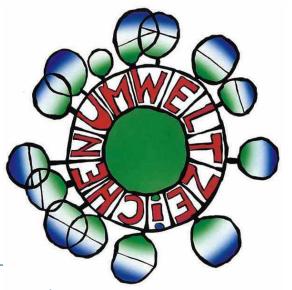
Product utility (lifetime and functionality) is also considered

A 100% linear product with shorter lifetime and/or less functionality than the industry average may have MCI < 0.1

Source: GRANTA, Allen Mac Arthur Foundation 2015, Circularity Project Overview



Recyclingprodukt aus Altreifen,



Fazit 8: Zusammen mit den Kunststoffen werden ca. 20 070 t/a bzw. 245 g/(cap a) Additive emittiert. Es handelt sich dabei um eine Vielzahl von Stoffen, viele von ihnen sind als gefährliche Stoffe registriert. Im Baustoffsektor werden eher mehr Additivmengen, im Verpackungsbereich eher weniger Additive eingesetzt.

Produktlabels Recyclingpapier

Labels für Altreifen?

Substitutionsquote statt Recyclingquote Empfehlungen der Expertenkommission

Definition Substitutionsquote: Festgelegte Anteile von Recyklateinsatz

- 1. Substitutionsquote statt Recyclingquote soll Produkt-, Branchen- und Materialbezogen sein
- 2. Ganzheitliches Monitoring UBA überwacht
- 3. Koordination aller politischen Aktivitäten, Harmonisierung der Politiken
- 4. Weiterentwicklung der Quotenvorgaben bis zu Details zu Recyklatanteilen
- 5. Forschungsprogramm inkl. Scenariobetrachtungen, Makroökonomische Folgerechnungen

Verwertungswege Altreifen 2016

Verwertung	In %/a	In t/a	Erlöse €/t Reifen
Zementindustrie	37,85	215.000	75
Gummigranulat und Stahlschrott	35,75	203.000	200
Export zur Wieder- und Weiterverwendung	11,27	64.000	125
Runderneuerung	5,28	38.000	130
Energetische Verwendung sonst.	1,76	10.000	200
Wiedereinsatz	1,41	8.000	50
Gesamt	100	568.000	-

Regenerate

Regenerate and restore natural capital

Share

Maximise product utilization

Optimise

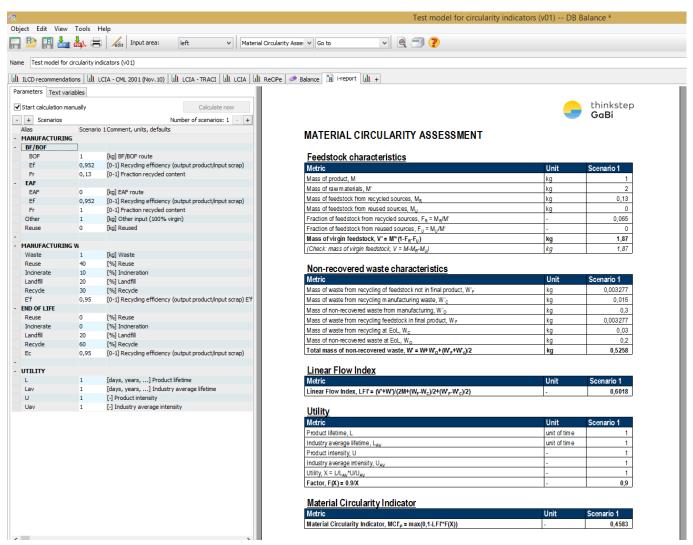
Optimise systems performance effectively

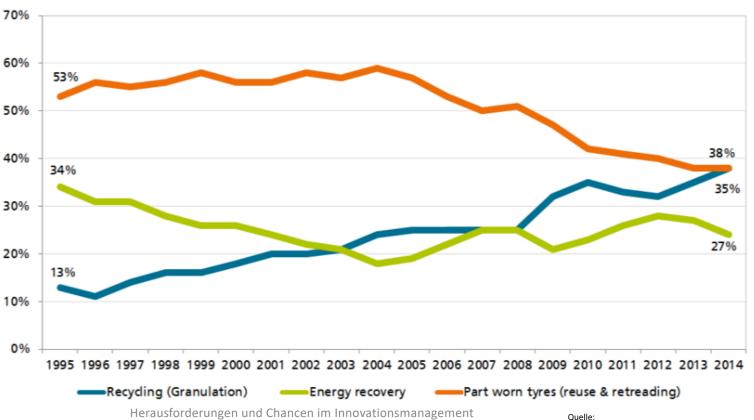
Loop

Keep materials and components in closed loops and prioritise inner loops

Deliver utility virtually

Exchange


Select resource input wisely



Herausforderungen und Chancen im Innovationsmanagement
Following the EMP methödölogy for Molforum "Zukunft
Altreifen", Eveline Lemke, 10.09.1019, Osnabrück

Hauptverwertungswege Reifen

Regenerate

Regenerate and restore natural capital

Share

Maximise product utilization

Optimise

Optimise systems performance effectively

Loop

Keep materials and components in closed loops and prioritise inner loops

Virtualise

Deliver utility virtually

Exchange

Select resource input wisely

Sustainable Sulution Steering

Beschleuniger

Substanzieller Beitrag zur Beschleunigung von Innovation

74.1%

Performer

Einhaltung von Nachhaltigkeitsstandards

2,6%

Transformator

Adressieren der Herausforderung

Challenged

0,3%

Lösung der Herausforderung technisch, sozial, ökologisch im Netzwerk zwischen Produktion und der Circular Economy, Ini**Nutzung in Wen Elementen der Wertschöpfungskette X X X** Altreifen", Eveline Lemke, 10.09.1019, Osnabrück

2. Stoffstrom Altreifen - Herausforderungen

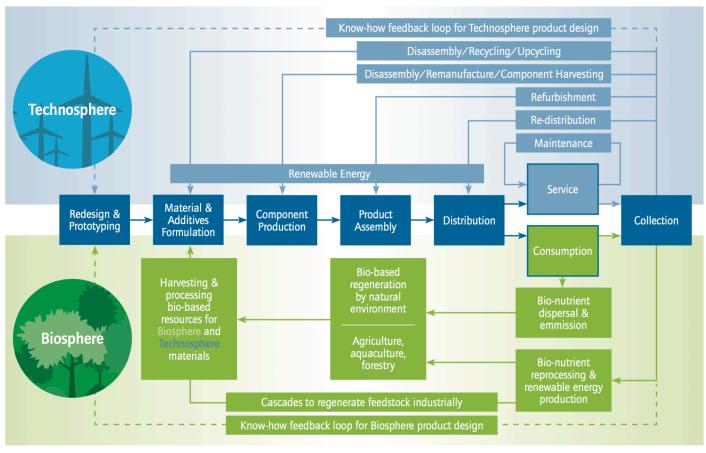


Abbildung 3: Illustration der Materialflüsse in der Circular Economy powered by Cradle to Cradle® (Quelle: EPEA & Returnity Partners)

Herausforderungen und Chancen im Innovationsmanagement der Circular Economy, Initiative ZARE - Fachforum "Zukunft Altreifen", Eveline Lemke, 10.09.1019, Osnabrück

Kautschukbaum

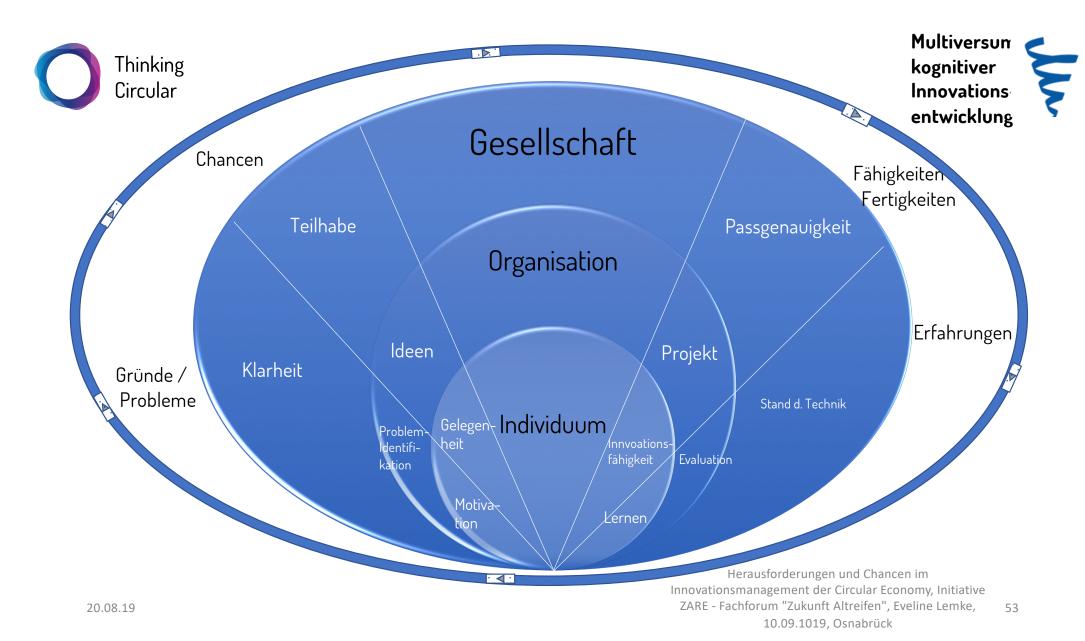
Quelle: Franz Eugen Köhler, Medizinalbuch

Zusammensetzung Reifen EU

Stoffe	Pkw-Reifen (in %)	Lkw-Reifen (in %)	
Naturkautschuk	18-22	20-30	
Synthesekautschuk	23-26	15-23	
Ruß & Silica	21-28	20-26	—
Stahl	11-16	18-25	—
Gewebe Synthetik	4-6	1	
Weichmacher, Additive	9-14	10	—

Technischer Kreislauf

Biologischer Kreislauf


Quelle: Sienkiewicz, 2012

Verwertungswege Altreifen 2016

Verwertung	In %/a	In t/a	Erlöse €/t Reifen	
Zementindustrie	37,85	215.000	75	
Gummigranulat und Stahlschrott	35,75	203.000	200	—
Export zur Wieder- und Weiterverwendung	11,27	64.000	125	
Runderneuerung	5,28	38.000	130	
Energetische Verwendung sonst.	1,76	10.000	200	
Wiedereinsatz	1,41	8.000	50	
Gesamt	100	568.000	-	

3. Innovationsmanagement innerhalb der Circular Economy

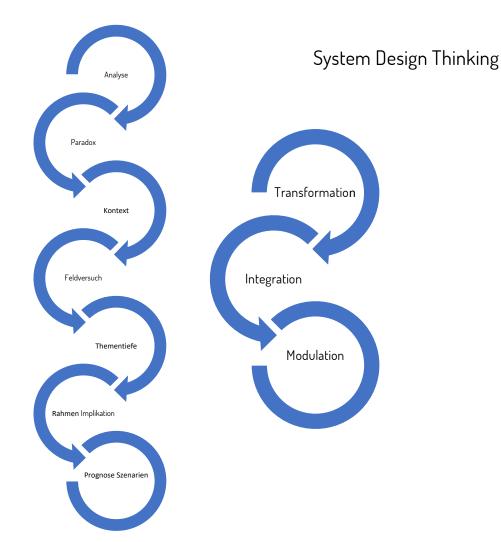
Impact-Innovation durch effektive Zielauswahl

	Produktionsphase		Nutzungsphase		End-of-Life-Phase				
	Ressourcensteuer	Kunststoffsteuer	Verbot von bestimmten Produkten	Pfand unabhängig von Mehrweg oder Einweg	Mehrwegquote (Flaschen, Runderneuerung etc.)	Maßnahmen zur Verlängerung der Nutzungsdauer	Vorgabe von Verwertungsquoten	Plastikmüllabgabe	Beteiligungs- entgelte an Rezyklierbarkeit koppeln
Kreislaufwir	tschaft o	der Kuns	tstoffe f	orcieren					
Kunststoff- verbrauch reduzieren	+	++	+	0	++	++	0	0	+
Recyclinganteil erhöhen	+	+	0	+	0	+	+	+	++
Kunststoffemissionen reduzieren									
Abrieb und Verwitterung verringern (PMP-B)	0	0	0	0	0	++	0	0	+
intendierte Zugabe verringern (PMP-A)	0	0	++	0	0	0	0	0	0
Littering verringern (Makroplastik, SMP)	0	0	+	++	0	+	0	0	+

++ stark positiver Einfluss, + mäßig positiver Einfluss, 0 kein Einfluss, - negativer Einfluss

Quelle: Fraunhofer Umsicht 2019

Handlungsoptionen


Legislativer Druck	Strategische Steuerung Reifenindustrie
Circular Economy Package – EU Tyre-to-Tyre-REACH-Verordnung wird erarbeitet, die für Reifen und Reifenteile PAK-Gehalte von weniger 10 mg/kg vorschreibt	Ziele übersetzen, Einhaltung von Gesetzen (z.B. Deponierungsverbot) verankern - Produzentenverantwortung wahrnehmen
Recyclingquote von 35 auf 85 % steigern	Aktives Solution Steering
Transparenz / Life-Cycle-Assessment	Design C2C entwickeln
Verbote? Abgaben? Kompensation für Bau von Abwasser-Trennsystemen und Mikroplastik-Reinigungsanlagen?	Aufklärung-, Schulung in der Branche und bei Kunden
Abrieb-Partikelgrößen / Kennzeichnungspflicht	Zertifizierungssystem ausbauen, Produktlabel einführen
Weiterentwicklung von Ökobilanzen und Nachhaltigkeits-Reporting für Mikroplasik	Innovationsstrategie, Innovationszentrum, Innovationsfond, Methode Creative Design Thinking

Innovation einen Rahmen geben heißt:

Desgining, Prototyping, Stewarding des sozial-ökologischen Wandels. Es gibt keine technische Veränderung ohne soziale Auswirkung.

Quelle: Kees Dorst, Frame Innovation, (2015)

Vielen Dank für Ihre Aufmerksamkeit

Thinking Circular Eveline Lemke Sustainability and Circular Economy Consulting Kapellenstraße 7 56651 Niederzissen Germany

Phone: +49 2636 96 91 795

E-Mail: Info@thinking-circular.com

vww.thinking-circular.com

Wechat: Eveline Lemke Twitter: @evelinelemke Herausforderungen und Chancen im Innovationsmanagemen der Circular Economy, Initiative ZARE - Fachforum "Zukunft Altreifen", Eveline Lemke, 10.09.1019, Osnabrück

